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To simulate the dynamic process of a magnetic head reading/writing data in a hard disk

drive, a rotating flexible thin disk perturbed by the reciprocating angular movement of a

suspension–slider system is modelled, where the suspension–slider system is

considered as a mass–damping–spring loading system. A system dynamic model is

Hill’s method involving harmonic balance. The reciprocating angular movement of the

suspension–slider system causes system parametric instability at some angular

movement frequencies. The large-amplitude angular movement is especially dangerous,

and angular movement frequency must be reduced when the slider works at large radii

of the disk. The parametric instability can be avoided or suppressed by operating at:

low-frequency and small-amplitude reciprocating angular movement, small mass, large

natural frequency and damping of the suspension–slider system, and low-speed

rotation of the disk.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Rotating disks are widely used components in mechanical engineering, such as circular saw blades, car brake disks, DVD
and Blu-ray disk, and computer hard disk drives. Hence the dynamics of rotating disk systems is a subject of great interest
in engineering.

Theoretically, most applications of the rotating disk can be modelled as the disk/slider problem. For computer hard disk
drives, Iwan and Stahl [1] investigated the disk/slider problem by modelling a rotating spring–mass–dashpot loading
system of exciting a stationary circular elastic disk, and found that stiffness, damping, and inertia of the loading system can
result in parametric instability of the system. Shen [2] demonstrated that axisymmetric plate damping can suppress the
instability of a stationary, elastic, annular disk excited by the rotating slider loading system. By considering the membrane
stresses induced by disk rotation, Ono et al. [3] formulated a combined system of a rotating flexible disk and a pair of
sliders (magnetic heads) and suspension systems that contact the disk at opposing points on its two sides, and investigated
the effects of the slider assembly parameters on system natural frequency and instability. For a spinning disk in contact
with a stationary load system, Chen and Bogy [4] predicted the effects of friction force, transverse mass, damping, and
stiffness in the stationary load system and the stiffening of the disk due to the centrifugal force, which affects natural
frequencies and stability of the spinning disk, and provided a theoretical understanding for previously reported
observations based on numerical solutions. The effects of rigid-body tilting on natural frequencies and stability of the
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disk/slider interface of a spinning flexible disk were studied both by analytical and numerical computation in Chen and Bogy
[5]. Young and Lin [6] analysed the stability of a rotating flexible disk transversely contacting with a stationary oscillating unit
that consists of two parallel combinations of springs and dampers attached above and under a mass. With a finite element
model, Zeng and Bogy [7] simulated the shock response of a disk–suspension–slider air bearing systems in hard disk drives.

For car brake disks, friction-induced vibration and parametric resonance phenomena are areas of research activity that
have received considerable attention [8]. Chan et al. [9] studied the effects of a purely frictional follower load rotating at
constant angular speed around a stationary and annular plate at speeds remote from those of the parametric resonances.
Mottershead et al. [10] investigated the parametric resonances that occur in a stationary annular disk under the action of a
distributed mass–spring–damper system that rotates, with friction, around the disk at subcritical speeds, and found that
the effects of the distributed mass and stiffness are almost neutral at subcritical speeds, but active in the supercritical
range. Ouyang et al. [11,12] studied the parametric resonances and stick–slip vibration that occur when an elastic system
consisting of two spring–dashpots, in the transverse and circumferential directions, and a common point mass rotates at
constant angular speed around an annular flexible disk. The instability of forward and backward travelling waves was
analysed in the transverse vibration of a stationary disk induced by the friction in a rotating mass–spring–damper system
in Ouyang and Mottershead [13]. Ouyang and Mottershead [14] investigated the parametric resonances of a stationary disk
excited by a rotating frictional load and influenced by a series of mass–spring–damper systems with or without friction,
and employed a genetic algorithm to determine the right number of mass–spring–damper systems and their optimal
positions in order to reduce and even eliminate the dynamic instability caused by rotating friction as a follower force on
the disk surface. In Ouyang [15], Ouyang et al. [16,17], and Cao et al. [18], the vibration and dynamic instability of a car disk
brake was modelled as a moving load problem on a stationary annular flexible disk acted upon by rotating components
(pads, caliper, and mounting) using the finite element method; the numerical results were compared with squeal
frequencies from experimental tests. Ouyang and Mottershead [19] investigated the instability of transverse vibration of
an elastic disk excited by two corotating sliders on either side of the disk; firstly they took into account the bending couple
acting in the circumferential direction produced by the different friction forces on the two sides of the disk, and
demonstrated that disk vibration can be suppressed by suitable assignment of parameter values of the sliders.

The above research [1–19] on the disk/slider problem all considered that radial position of the slider loading system on
the disk was constant and immovable. By simplifying the slider loading system as a transverse concentrated force,
Weisensel and Schlack [20,21] investigated the dynamic response of a stationary elastic annular disk to rotating
concentrated force of a harmonically time-varying amplitude with sudden and harmonic changes in radial position,
respectively. With the same simplification of the slider loading system, Huang and Chiou [22] modelled a spinning flexible
disk under a harmonically varying force travelling in the radial direction, and found that the force travelling speed acts as a
driving frequency and causes resonances at certain speeds. In reality, the simplification in Refs [20–22] may be
unreasonable in modelling the disk/slider problem in hard disk drives, because inertia, damping, and stiffness of the slider
loading system can all result in system instability [1–6,8,13,19], but the transverse concentrated force cannot.

In this paper, the suspension–slider system in the hard disk drive was considered as a mass–damping–spring loading
system, and a rotating flexible disk perturbed by reciprocating angular movement of the suspension–slider system was
modelled to simulate the dynamic process of magnetic head reading/writing data. The system model was formulated as a
parametrically excited system, and its dynamic stability was investigated by Hill’s method involving harmonic balance [23].
2. Equation of motion

As shown in Fig. 1, a flexible thin disk that is clamped at inner radius b, free at outer radius a, and rotating at a constant
angular speed O around its centre O is considered, and disk thickness h is very small compared with the outer radius.
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Fig. 1. Rotating flexible disk under the suspension–slider system.



Y.-C. Pei et al. / Journal of Sound and Vibration 329 (2010) 5520–55315522
The suspension rotates around its one end O0 and clamps a slider at the other end. The suspension length is L and the
distance O–O0 is S. The suspension–slider system is modelled as a mass–damping–spring ms�cs�ks loading system [1,2,6]
located at (rs,ys) of the disk. The disk and the slider are assumed to have the same deflection at the contact point. Including
a viscous damping c, the governing equation of the rotating flexible disk incorporating the slider is established in polar
coordinates (r,y) fixed on the ground as
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is a bi-harmonic differential operator, E is Young’s modulus, n is

Poisson’s ratio, r is mass per unit volume of the disk, and d�,� is the Dirac delta function. In Eq. (1), sr and sy are the disk
membrane stress resultants expressed using the zero displacement model [6,23]:

sr ¼ ½8b0ða=rÞ2þ8b1�ð3þvÞðr=aÞ2�=8

sy ¼ ½�8b0ða=rÞ2þ8b1�ð1þ3vÞðr=aÞ2�=8 (2)

where

b0 ¼
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At the clamped edge r=b, the boundary conditions of the transverse deflection are

w r ¼ b ¼ 0, @w=@r r ¼ b ¼ 0
���� (3)

Since the bending moment and shear force in the disk are zero at the free edge r=a, the boundary conditions are
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Using the Bessel functions as the radial shape function of the disk [1,2,6,9–14,16–19,23], the solution of Eq. (1) can be
assumed to be

w¼
X1

m ¼ 0

X1
n ¼ �1

einyBnðkm,nrÞcm,nxm,nðtÞ (5)

where m, n are the numbers of nodal circles and nodal diameters, respectively, xm,�n=conj(xm,n), the operator conj(�) stands

for complex conjugate, the radial shape function vector [23] Bnðkm,nrÞ ¼ Jnðkm,nrÞ Ynðkm,nrÞ Inðkm,nrÞ Knðkm,nrÞ
h i

,

cm,n ¼ c1 c2 c3 c4
	 
T

, and Bn(km,nr)cm,n=B�n(km,�nr)cm,�n; km,n and cm,n can be determined by the self-adjoint

eigenvalue problem corresponding to Eqs. (1)–(4) for a stationary disk [1,23]. In addition, the orthonormality condition for
the radial mode shape Bn(km,nr)cm,n is

Z a

b
½Bnðkm1 ,nrÞcm1 ,nBnðkm2 ,nrÞcm2 ,n�r dr¼ dm1 ,m2

(6)

With Galerkin’s method [23], substituting Eq. (5) into Eq. (1), multiplying Eq. (1) by e� inyBn(km,nr)cm,n and integrating both

sides over the disk area (rA[b,a], yA[0,2p]), an ordinary differential system is obtained as

€xnþðc=r=hþ i2nOÞ _xnþðSnþO2Ln�n2O2I1þ icnOI1=r=hÞxnþ
XNn

k ¼ �Nn

eið�nþkÞys

2prh
Hn,kðrsÞðms €xkþcs _xkþksxkÞ ¼ 0 (7)

where xn ¼ � � � xm,n � � �
h iT

and m¼ 0,1, � � � ,Nm. I1, Sn, Ln, and Hn,kðrsÞ can be found in Appendix C.

Let X ¼ . . . xn
T . . .

h iT
and n¼�Nn,. . .,�1,0,1,. . .,Nn. Rearranging Eq. (7) yields

½IþmsHðrs,ysÞ�
€Xþ½cI=r=hþ i2OInþcsHðrs,ysÞ�

_Xþ½SþksHðrs,ysÞþO2
ðL�In2 Þþ icOIn=r=h�X ¼ 0 (8)

See Appendix D for S, L, I, In, In2 , and Hðrs,ysÞ.
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As illustrated in Fig. 1, coordinates of the slider on disk can be solved as

rsðjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2þL2�2SLcosðjÞ

q
(9)

ysðjÞ ¼ p�tan�1 LsinðjÞ
S�LcosðjÞ

� �
(10)

where j is the suspension moving angle.
The range of the suspension angular movement can be written as

j 2 ½j1 ,j2� (11)

where

j1 ¼ cos�1 S2þL2�b2

2SL

� �
and

j2 ¼ cos�1 S2þL2�a2

2SL

� �

It can be assumed that the suspension moves over a small range D around j0:

j¼j0þD (12)

where j0=j1+a(j2�j1) . The dimensionless slider position a indicates the radii of disk track where the slider is
positioned.

Expanding Hðrs,ysÞ into a Taylor series with respect to j around j0 yields

Hðrs,ysÞ ¼H0
þDHuþD2H00 (13)

where H0, Hu, and H00 are given in Appendix D.
Without loss of generality, a periodically reciprocating angular movement of the suspension–slider system is assumed:

D¼ eðpeiotþpe�iotÞ (14)

where p
�� ��¼ 1=2, p¼ conjðpÞ; e=b(j2�j1) , o and b are the frequency and dimensionless amplitude of the reciprocating

angular movement, respectively, a+br1, and a�bZ0. The angular movement frequency o indicates the magnetic head
read/write speed in the hard disk drive.

Substituting Eqs. (13) and (14) in Eq. (8) yields a dynamic model of the rotating flexible disk perturbed by the
reciprocating angular movement of the suspension–slider system:

fIþms½H
0
þeðpeiotþpe�iotÞHuþe2ðpeiotþpe�iotÞ

2H00�g €XþfcI=r=hþ i2OInþcs½H
0
þeðpeiotþpe�iotÞHu

þe2ðpeiotþpe�iotÞ
2H00�g _XþfSþO2

ðL�In2 Þþ icOIn=r=hþks½H
0
þeðpeiotþpe�iotÞHuþe2ðpeiotþpe�iotÞ

2H00�gX ¼ 0 (15)

Since in Eq. (15) the coefficient matrices of €X , _X , and X are time-dependent, the dynamic model is a parametrically excited
system.
3. System stability

Parametric instability characterized by unbounded growth of a small disturbance can happen in a parametrically
excited system; thus dynamic stability of the system is of interest in engineering. From Hill’s method, Takahashi [24],
Turhan [25], Turhan and Koser [26], and Turhan and Bulut [27], the solution of Eq. (15) can be expressed as a product of a
characteristic component and harmonic component:

X ¼ elt
X1

j ¼ �1

aje
ijot � elt

XNj

j ¼ �Nj

aje
ijot (16)

Eq. (16) can be rewritten in matrices [23] as

X ¼ eltUA (17)

where A¼ � � � aT
j � � �

h iT
and U¼ � � � eijotI � � �

	 

, j=�Nj,y,�1,0,1,y,Nj. The first and second derivatives [23] of U

with respect to t are expressed as

_U ¼ ioUJ1, €U ¼�o2UJ2 (18)

where J1 and J2 are given in Appendix E.
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Let

e�ijotU¼UTj (19)

where Tj is given in Appendix E.
Substituting Eqs. (17)–(19) in Eq. (15) yields

fl2
ðIUþmsDÞþl½IUc=r=hþ2iOInUþ2ioIU J1þDðcsIDþ2iomsJ1Þ�þ

½SUþO2
ðL�In2 ÞU�2oOInUJ1�o2IU J2þ ioIUJ1c=r=hþ

icOInU=r=hþDðksIDþ iocsJ1�o2msJ2Þ�ge
ltA¼ 0 (20)

where

D¼H0UþeHuUðpT1
T
þpT1Þþe2H00Uðp2T2

T
þp2T2þ2ppIDÞ

Dimensionless variables are introduced using

l¼ ðW�ZÞO0,0, o¼ xO0,0, O¼ zO0,0

c=r=h¼ 2ZO0,0, cs ¼ 2msZsgsO0,0

ks ¼msgs
2O0,0

2 (21)

Applying the harmonic balance method to Eq. (20) yields the quadratic eigenvalue problem

ðW2E2þ2WE1þE0ÞA¼ 0 (22)

where

P¼Q 0
þeQ uðpT1

T
þpT1Þþe2Q 00ðp2T2

T
þp2T2þ2ppIDÞ

E2 ¼ IDþmsP, E1 ¼ izIn
Dþ ixJ1þmsP½ixJ1þðZsgs�ZÞID�

E0 ¼Kþz2
ðKs�In2

D Þ�2xzIn
DJ1�x

2J2�Z2IDþmsP½ðgs
2þZ2�2ZZsgsÞIDþ2ixðZsgs�ZÞJ1�x

2J2�

ID, In
D, In2

D , K, Ks, Q 0, Q u, and Q 00 are given in Appendix E. The dynamic stability can be investigated by Rel (ReW�Z), and
the corresponding basic solution is unstable and unbounded as t-N when any eigenvalue l possesses a positive real
part [23].

An instability coefficient is introduced as

s¼max
i
ðReWiÞ�Z (23)

From Eq. (23), system equilibrium is unstable when s40; thus increase of viscous damping Z can improve the system
stability. Since the practical viscous damping Z is small, it can be considered [23] that the equilibrium is unstable when
s40, and it is stable when s=0oZ.
4. Numerical results and discussion

The fundamental parameters of the suspension–slider–disk system are selected to be S=58 mm, L=55 mm, a=95/2 mm,
b=35/2 mm, h=0.6 mm, E=200 GPa, r=7840 kg m�3, and v=0.3. Furthermore, z=0.5, a=0.5, b=0.05, ms=0.01 kg, Zs=0.03,
and gs=0.2; unless otherwise stated, these values are used as default parameters in the following analysis.

Numerical convergence of the truncation number Nm of radial expansion in Bessel functions, the truncation number Nn

of circumferential expansion in trigonometric functions, and the truncation number Nj of Fourier expansion in time needs
to be investigated firstly. When the radial position of the slider loading system on the disk is constant, i.e. b=0 (e=0),
Eq. (22) reduces to

fW2
ðIþmsH

0
Þþ2W½izInþmsðZsgs�ZÞH

0
�þ½S=O0,0

2
þz2
ðL�In2 Þ�Z2Iþmsðgs

2þZ2�2ZZsgsÞH
0
�gA¼ 0 (24)

With increases of Nm and Nn, numerical convergence of the instability coefficient s, from Eqs. (24) and (23), is illustrated in
Fig. 2, where the contour lines indicate the number of matrix elements ðNmþ1Þ2ð2Nnþ1Þ2 in Eq. (24). When NmZ1 and
NnZ6, the instability coefficient s is convergent with increase of Nm and Nn. As listed in Table 1, the instability coefficient s

from Eqs. (22) and (23) is also convergent as Nj increases. Since the number of matrix elements in Eq. (22),
ðNmþ1Þ2ð2Nnþ1Þ2ð2Njþ1Þ2, is roughly proportional to calculation time of the quadratic eigenvalue problem, under the
condition of an acceptable accuracy, a proper set of (Nm,Nn,Nj) should be as small as possible to decrease the number of
calculations. From Ouyang et al. [12], Fig. 2, Turhan [25], Turhan and Koser [26], Turhan and Bulut [27], and Table 1, Nm=2,
Nn=12, and Nj=3 are selected to predict the fundamental instability parameter regions in this paper.

With constant and immovable radial position of the slider loading system on the disk, the research [1–6,8,13,19]
indicated that inertia ms, damping Zs, and stiffness gs of the loading system can all result in system instability, which is
called ‘constant instability’ in this paper. Nevertheless, the reciprocating angular movement of the suspension–slider
system results in the parametrically excited system Eq. (15), which can induce system parametric instability, called
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Table 1
Convergence of instability coefficient with increase of truncation number Nj of Fourier expansion in time. Nm=2 and Nn=12.

Nj x=1.34 x=1.49 x=1.76 x=1.93

1 0.003530704012342 0.002350575748242 0.004720549234872 0.003465474074417

2 0.003546599849910 0.002357270651480 0.004743968093363 0.003435800926040

3 0.003546609201077 0.002357272601631 0.004744514193429 0.003435854493085

4 0.003546609203490 0.002357272600749 0.004744514437021 0.003435854427535

5 0.003546609203493 0.002357272600701 0.004744514437242 0.003435854427441

6 0.003546609203452 0.002357272600625 0.004744514437359 0.003435854427145

7 0.003546609203415 0.002357272600649 0.004744514437326 0.003435854427306

8 0.003546609203414 0.002357272600985 0.004744514437322 0.003435854426975
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‘reciprocating instability’. Effects of system parameters (x,a,b,z,gs,ms,Zs) on the disk equilibrium stability (s) are
investigated using Eqs. (22)–(23) and illustrated in grey images Figs. 3–8.

As shown in Fig. 1, slider radial position on the disk can be changed by varying the suspension moving angle j
expressed as j1þðj2�j1Þ ½aþbðpeiotþpe�iotÞ� from Eqs. (12) and (14). Fig. 3 presents effects of frequency x and
amplitude b of the reciprocating angular movement of the suspension–slider system on system stability. In the grey image,
some dark parameter regions appear, where system instability occurs, since s40. Specially, when b=0 (i.e. e=0), the slider
radial position is constant as presented in Refs. [1–19], the time-dependent terms vanish in Eq. (15), and the governing
equation is not a parametrically excited system any more and can just induce the constant instability; thus there is no
instability region in Fig. 3 for this special case. Nevertheless, some zonal dark parameter regions widen and darken with
the increase of amplitude b. In other words, the reciprocating angular movement of suspension–slider system induces
system instability at some angular movement frequencies x, and angular movement amplitude b increases the instability.
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As shown in Fig. 3, the low-frequency and small-amplitude angular movement of the suspension–slider system is
beneficial to avoid the instability. However, with further increase of amplitude b, a large instability coefficient s appears for
any angular movement frequency x. Therefore, the large-amplitude angular movement of the suspension–slider system is
especially dangerous for system stability.

The effects of slider position a on system stability are illustrated in Fig. 4. Corresponding to the constant instability, a
dark parameter region parallel to the frequency axis x appears in Fig. 4. When the slider position a is small, the slider works
on the disk inner track with small radii, and some dark zonal parameter regions implying reciprocating instability brighten
due to large stiffness at small radii of the disk. As shown in Fig. 4, system instability occurs at small radii (inner track) of the
disk with increase of angular movement frequency x. Therefore angular movement frequency of the suspension–slider
system must be reduced when the slider works at large radii (outer track) of the disk.

The variations of instability parameter regions with disk rotational speed are shown in Fig. 5. There are some dark
parameter regions parallel to the frequency axis x; these instability regions are related to the constant instability as
indicated in Chen and Bogy [5] and Young and Lin [6]. However, other dark parameter regions vary with angular movement
frequency x; that is to say they are the reciprocating instability. In the low-frequency x and low-speed z parameter region,
the system equilibrium is almost stable. Since high speed is desirable to improve the performance of hard disk drives, some
reasonable angular movement frequency x and disk speed z with small instability coefficient s can be selected from Fig. 5.

Fig. 6 presents the effects of mass ms of suspension–slider loading system on system stability. When mass ms vanishes,
the suspension–slider–disk system becomes a reduced one of a single free rotating disk, and the reduced system is always
stable since s=0, from Eqs. (22) and (23). With an increase of mass ms, some dark zonal parameter regions appear in the
grey image and the reciprocating instability occurs at low frequency x of the reciprocating angular movement. Therefore, in
the design of a hard disk drive, a small-mass slider should be selected to improve system stability and increase the read/
write speed. A dark region appears for large mass ms and low frequency x, but the value of s in this region is very small
compared with those in the zonal parameter regions.

The effects of natural frequency gs and damping Zs of the suspension–slider loading system on system stability are
illustrated in Figs. 7 and 8, respectively. There are also some dark zonal parameter regions in the grey images. With increase of
natural frequency gs and damping Zs, these zonal dark parameter regions for the reciprocating instability become bright and
narrow. A large natural frequency gs results in system instability at high-frequency x, as shown in Fig. 7. Therefore, large
natural frequency and damping of the suspension–slider loading system can be used to suppress the reciprocating instability.

5. Conclusions

In this paper, a rotating flexible disk perturbed by the reciprocating angular movement of a suspension–slider system
was formulated as a parametrically excited system, and the dynamic stability of the system was investigated by Hill’s
method involving harmonic balance. The following conclusions on system stability can be drawn:
(1)
 reciprocating angular movement of the suspension–slider system induces system parametric instability at some
angular movement frequencies;
(2)
 large-amplitude angular movement is especially dangerous, and angular movement frequency must be reduced when
the slider works at large radii of the disk;
(3)
 the parametric instability can be avoided by operating at low-speed rotation of the disk and low-frequency, small-
amplitude angular movement of the suspension–slider system;
(4)
 small mass and large natural frequency and damping of the suspension–slider system can be used to suppress the
parametric instability.
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Appendix A. Slider coordinates and their derivatives

r0 ¼ rsðj0Þ, ru0 ¼ drs=dj j ¼ j0
¼ SLr0

�1 sinðj0Þ
��

r000 ¼ d2rs=dj2
j ¼ j0

¼ SLr0
�1½cosðj0Þ�SLr0

�2 sin2
ðj0Þ�

���
y0 ¼ ysðj0Þ,

yu0 ¼ dys=dj j ¼ j0
¼ Lr0

�2½L�Scosðj0Þ�
��

y000 ¼ d2ys=dj2
j ¼ j0

��
¼ SLr0

�2½ð1�2L2r0
�2Þsinðj0ÞþSLr0

�2 sinð2j0Þ�
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Appendix B. Derivatives of Bessel shape function vector

Bunðkm,nr0Þ ¼ nr�1
0 B00

n ðkm,nr0Þ�km,nB10
n ðkm,nr0Þ;B

00
nðkm,nr0Þ ¼ nðn�1Þr�2

0 B00
n ðkm,nr0Þþk2

m,nB01
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B00
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Jnðkm,nr0Þ

Ynðkm,nr0Þ
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Knðkm,nr0Þ

2
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3
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T

, B01
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�Jnðkm,nr0Þ
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66664

3
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T

B10
n ðkm,nr0Þ ¼

Jnþ1ðkm,nr0Þ
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3
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T

, and B11
n ðkm,nr0Þ ¼

Jnþ1ðkm,nr0Þ

Ynþ1ðkm,nr0Þ

Inþ1ðkm,nr0Þ

�Knþ1ðkm,nr0Þ

2
66664

3
77775

T

Appendix C. Matrices for n nodal diameters

Sn ¼ diag � � � Om,n
2
� � �

h i
and operator diag[�] stands for diagonal matrix. Sn ¼ S�n and Om,n ¼ km,n

2h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=½12rð1�v2Þ�

p
.

I1 is the identity matrix with the size of Sn.
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& ^ c
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Appendix D. System matrices

S¼ diag � � � Sn � � �
	 


, L¼ diag � � � Ln � � �
	 


I¼ diag � � � I1 � � �
	 


, In ¼ diag � � � nI1 � � �
	 


In2 ¼ diag � � � n2I1 � � �
h i
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Appendix E. Matrices induced by harmonic balance

ID ¼ diag � � � I � � �
	 


, J1 ¼ diag � � � jI � � �
h i

J2 ¼ diag � � � j2I � � �
h i

In
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